摘要:AbstractThe integration of signals from physical, social and cyber spaces, known as Cyber-Physical-Social systems (CPSS), is a new research paradigm for urban transportation, where the traffic control and management (C&M) is collaborative optimized among the three sub-systems. Though some technologies and optimization methods have been studied since its proposition, there is a lack of a systemic architecture as well as an overall implementation about how to efficiently exploit the social signals. For this reason, this paper proposes a general framework of CPSS for urban transportation and presents a feasible solution for traffic optimization based on knowledge automation. The specific implementation includes basic modeling of CPSS, knowledge evolution and reasoning, and collaborative optimization of C&P strategies. As a remarkable highlight, the influence of both individual activities and social learning is concerned during knowledge evolution and reasoning part. A case study from the application in the city of Dongguan is also given to validate our proposed framework and methods, showing that they can efficiently improve the average speed of the actual transportation.