首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Investigating the Effect of Cloud Cover on Radiative Cooling Potential With Artificial Neural Network Modeling
  • 本地全文:下载
  • 作者:Reza Mokhtari ; Samaneh Fakouriyan ; Roghayeh Ghasempour
  • 期刊名称:Frontiers in Energy Research
  • 电子版ISSN:2296-598X
  • 出版年度:2021
  • 卷号:9
  • DOI:10.3389/fenrg.2021.658338
  • 语种:English
  • 出版社:Frontiers Media S.A.
  • 摘要:Radiative cooling is a novel and promising technology in which, heat is radiated through the infrared wavelength (8–13 μm) to the cold outer space, while the incident solar radiation (0.3–4 μm) is reflected. This leads to a temperature reduction in the material that can be utilized as a free and renewable resource of cooling for different applications. For the sake of increasing the efficiency and the cooling potential of these systems, scientists have precisely studied the affecting parameters and developed analytical equations. The sky cloud coverage is one of the major affecting parameters that is challenging to model due to its inherent complexity and diversity. Therefore, in this article, we investigated the effect of cloud cover on the radiative cooling potential by utilizing machine learning techniques. In this regard, a non-linear autoregressive with exogenous feedback (NARX) neural network has been developed to predict the temperature of the system in different climate conditions by taking cloud coverage into account. Results of this investigation indicate that there is an intensely indirect relationship between cloud coverage and the performance of the system. Accordingly, a cloudy sky can lead to 15°C inaccuracy in the modeling of the system and may even lead to a temperature increase relative to the ambient, which inhibits the applicability of the system. It was eventually concluded that the cloud cover, as one of the major parameters that determine the performance of the system, must be taken into account in radiative cooling system designs.
国家哲学社会科学文献中心版权所有