首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Landslide Geo-Hazard Risk Mapping Using Logistic Regression Modeling in Guixi, Jiangxi, China
  • 本地全文:下载
  • 作者:Wenchao Huangfu ; Weicheng Wu ; Xiaoting Zhou
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2021
  • 卷号:13
  • 期号:9
  • 页码:4830
  • DOI:10.3390/su13094830
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:Reliable prediction of landslide occurrence is important for hazard risk reduction and prevention. Taking Guixi in northeast Jiangxi as an example, this research aimed to conduct such a landslide risk assessment using a multiple logistic regression (MLR) algorithm. Field-investigated landslides and non-landslide sites were converted into polygons. We randomly generated 50,000 sampling points to intersect these polygons and the intersected points were divided into two parts, a training set (TS) and a validation set (VT) in a ratio of 7 to 3. Thirteen geo-environmental factors, including elevation, slope, and distance from roads were employed as hazard-causative factors, which were intersected by the TS to create the random point (RP)-based dataset. The next step was to compute the certainty factor (CF) of each factor to constitute a CF-based dataset. MLR was applied to the two datasets for landslide risk modeling. The probability of landslides was then calculated in each pixel, and risk maps were produced. The overall accuracy of these two models versus VS was 91.5% and 90.4% with a Kappa coefficient of 0.814 and 0.782, respectively. The RP-based MLR modeling achieved more reliable predictions and its risk map seems more plausible for providing technical support for implementing disaster prevention measures in Guixi.
国家哲学社会科学文献中心版权所有