首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Non-invasive cell classification using the Paint Raman Express Spectroscopy System (PRESS)
  • 本地全文:下载
  • 作者:Yuka Akagi ; Nobuhito Mori ; Teruhisa Kawamura
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-88056-3
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Raman scattering represents the distribution and abundance of intracellular molecules, including proteins and lipids, facilitating distinction between cellular states non-invasively and without staining. However, the scattered light obtained from cells is faint and cells have complex structures, making it difficult to obtain a Raman spectrum covering the entire cell in a short time using conventional methods. This also prevents efficient label-free cell classification. In the present study, we developed the Paint Raman Express Spectroscopy System, which uses two fast-rotating galvano mirrors to obtain spectra from a wide area of a cell. By using this system and applying machine learning, we were able to acquire broad spectra of a variety of human and mouse cell types, including pluripotent stem cells and confirmed that each cell type can be classified with high accuracy. Moreover, we classified different activation states of human T cells, despite their similar morphology. This system could be used for rapid and low-cost drug evaluation and quality management for drug screening in cell-based assays.
国家哲学社会科学文献中心版权所有