首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Petrophysical and mechanical rock property database of the Los Humeros and Acoculco geothermal fields (Mexico)
  • 本地全文:下载
  • 作者:Leandra M. Weydt ; Ángel Andrés Ramírez-Guzmán ; Antonio Pola
  • 期刊名称:Earth System Science Data Discussions
  • 电子版ISSN:1866-3591
  • 出版年度:2021
  • 卷号:13
  • 期号:2
  • 页码:571-598
  • DOI:10.5194/essd-13-571-2021
  • 语种:English
  • 出版社:Copernicus Publications
  • 摘要:Petrophysical and mechanical rock properties are key parameters for the characterization of the deep subsurface in different disciplines such as geothermal heat extraction, petroleum reservoir engineering or mining. They are commonly used for the interpretation of geophysical data and the parameterization of numerical models and thus are the basis for economic reservoir assessment. However, detailed information regarding petrophysical and mechanical rock properties for each relevant target horizon is often scarce, inconsistent or distributed over multiple publications. Therefore, subsurface models are often populated with generalized or assumed values resulting in high uncertainties. Furthermore, diagenetic, metamorphic and hydrothermal processes significantly affect the physiochemical and mechanical properties often leading to high geological variability. A sound understanding of the controlling factors is needed to identify statistical and causal relationships between the properties as a basis for a profound reservoir assessment and modeling. Within the scope of the GEMex project (EU H2020, grant agreement no. 727550), which aims to develop new transferable exploration and exploitation approaches for enhanced and super-hot unconventional geothermal systems, a new workflow was applied to overcome the gap of knowledge of the reservoir properties. Two caldera complexes located in the northeastern Trans-Mexican Volcanic Belt – the Acoculco and Los Humeros caldera –were selected as demonstration sites.The workflow starts with outcrop analog and reservoir core sample studies in order to define and characterizethe properties of all key units from the basement to the cap rock as well as their mineralogy and geochemistry.This allows the identification of geological heterogeneities on different scales (outcrop analysis, representativerock samples, thin sections and chemical analysis) enabling a profound reservoir property prediction.More than 300 rock samples were taken from representative outcrops inside the Los Humeros and Acoculcocalderas and the surrounding areas and from exhumed “fossil systems” in Las Minas and Zacatlán. Additionally,66 core samples from 16 wells of the Los Humeros geothermal field and 8 core samples from well EAC1 ofthe Acoculco geothermal field were collected. Samples were analyzed for particle and bulk density, porosity,permeability, thermal conductivity, thermal diffusivity, and heat capacity, as well as ultrasonic wave velocities,magnetic susceptibility and electric resistivity. Afterwards, destructive rock mechanical tests (point load tests,uniaxial and triaxial tests) were conducted to determine tensile strength, uniaxial compressive strength, Young’smodulus, Poisson’s ratio, the bulk modulus, the shear modulus, fracture toughness, cohesion and the frictionangle. In addition, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses were performed on 137samples to provide information about the mineral assemblage, bulk geochemistry and the intensity of hydrothermal alteration.An extensive rock property database was created (Weydt et al., 2020; https://doi.org/10.25534/tudatalib201.10), comprising 34 parameters determined on more than 2160 plugs. More than 31 000 data entries werecompiled covering volcanic, sedimentary, metamorphic and igneous rocks from different ages (Jurassic toHolocene), thus facilitating a wide field of applications regarding resource assessment, modeling and statistical analyses.
国家哲学社会科学文献中心版权所有