首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:An Innovative Intelligent System with Integrated CNN and SVM: Considering Various Crops through Hyperspectral Image Data
  • 本地全文:下载
  • 作者:Shiuan Wan ; Mei Ling Yeh ; Hong Lin Ma
  • 期刊名称:ISPRS International Journal of Geo-Information
  • 电子版ISSN:2220-9964
  • 出版年度:2021
  • 卷号:10
  • 期号:4
  • 页码:242
  • DOI:10.3390/ijgi10040242
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Generation of a thematic map is important for scientists and agriculture engineers in analyzing different crops in a given field. Remote sensing data are well-accepted for image classification on a vast area of crop investigation. However, most of the research has currently focused on the classification of pixel-based image data for analysis. The study was carried out to develop a multi-category crop hyperspectral image classification system to identify the major crops in the Chiayi Golden Corridor. The hyperspectral image data from CASI (Compact Airborne Spectrographic Imager) were used as the experimental data in this study. A two-stage classification was designed to display the performance of the image classification. More specifically, the study used a multi-class classification by support vector machine (SVM) + convolutional neural network (CNN) for image classification analysis. SVM is a supervised learning model that analyzes data used for classification. CNN is a class of deep neural networks that is applied to analyzing visual imagery. The image classification comparison was made among four crops (paddy rice, potatoes, cabbages, and peanuts), roads, and structures for classification. In the first stage, the support vector machine handled the hyperspectral image classification through pixel-based analysis. Then, the convolution neural network improved the classification of image details through various blocks (cells) of segmentation in the second stage. A series of discussion and analyses of the results are presented. The repair module was also designed to link the usage of CNN and SVM to remove the classification errors.
国家哲学社会科学文献中心版权所有