摘要:AbstractIn this investigation, we have analyzed the structural, electrical, and optical behaviors of pure and composite thin films which are obtained from 2D monolayer molybdenum disulfide (MoS2) flakes, conjugated oligomer (CO) 1,4-Bis(9-ethyl-3-carbazo-vinylene)-9,9-dihexyl-fluorene (BECV-DHF), and by combining CO (BECV-DHF) with MoS2in forms of CO/MoS2composites. All the samples are coated on SiO2/Si substrates using the spin coating procedure where a spin-coating solution has been obtained by dispersing CO and MoS2in ethanol or toluene. The structural morphology of MoS2films and CO/MoS2films of various thicknesses are analyzed using field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), and profilometer. These experimental results confirm the formation of MoS2layer composite with oligomer nanocrystals. The optical properties of MoS2, CO, and CO/MoS2films showed that the increased film thickness shifted the spectral peaks towards near infrared (NIR) and ultraviolet–visible (UV) regions of the electromagnetic spectrum. Moreover, devices such as solar cells, flexible memory cell and MOSFET were designed. The I-V characteristics of these devices show that CO/MoS2composite films could serve as potential candidates for organic-inorganic nano-electronic device applications.