首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Hardware-in-the-loop test of learning-based controllers for grid-supportive building heating operation
  • 本地全文:下载
  • 作者:Lilli Frison ; Sweetin Paul ; Torsten Koller
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:17107-17112
  • DOI:10.1016/j.ifacol.2020.12.1652
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWhile MPC is the state-of-the-art approach for building heating control with proven cost savings and improvement in energy flexibility, in practice, buildings are operated by simple rules-based controllers which are not able to accomplish an energy efficient and flexible operation. This paper explores the suitability of deep neural networks for approximating optimal economic MPC strategies for this task. In particular, we develop a convolutional neural network controller and test it in a closed-loop simulation against MPC and an improved predictive rule-based controller. The learned controller is easy to implement and fast to process on standard building control hardware. The feasibility, performance and robustness of the learned controller is validated in a realistic hardware-in-the-loop test setup for the demand-responsive operation of a heat pump combined with a storage tank.
  • 关键词:KeywordsLearning-based ControlNeural Network ControlEconomic MPCEnergy StorageOperationPlanningBuilding AutomationSmart Grids
国家哲学社会科学文献中心版权所有