摘要:AbstractFollowing the intuition that not all latent variables in probabilistic principal component analysis method shifts simultaneously, this paper proposes a spike-and-slab regularization technique for nonlinear fault detection and isolation. Different from the existing probabilistic latent variable models, a spike-and-slab prior is introduced to downweight the irrelevant information of latent variables for the discriminative model. The resulting latent subspace supported by regularization parameters is not only sensitive to the informative variables, but it also eliminates the influence of the non-informative ones. The feasibility and efficiency of the proposed approach will be tested on an industrial methanol distillation dataset. Moreover, the performance will be compared with conventional probabilistic latent variables methods.