首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Process Monitoring with Sparse Bayesian Model for Industrial Methanol Distillation
  • 本地全文:下载
  • 作者:Lin Luo ; Lei Xie ; Hongye Su
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:424-430
  • DOI:10.1016/j.ifacol.2020.12.210
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractFollowing the intuition that not all latent variables in probabilistic principal component analysis method shifts simultaneously, this paper proposes a spike-and-slab regularization technique for nonlinear fault detection and isolation. Different from the existing probabilistic latent variable models, a spike-and-slab prior is introduced to downweight the irrelevant information of latent variables for the discriminative model. The resulting latent subspace supported by regularization parameters is not only sensitive to the informative variables, but it also eliminates the influence of the non-informative ones. The feasibility and efficiency of the proposed approach will be tested on an industrial methanol distillation dataset. Moreover, the performance will be compared with conventional probabilistic latent variables methods.
  • 关键词:KeywordsProcess monitoringfault detectionisolationBayesian variable selectionspike-and-slab priorindustrial methanol distillation
国家哲学社会科学文献中心版权所有