首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:HPIPM: a high-performance quadratic programming framework for model predictive control ⁎
  • 本地全文:下载
  • 作者:Gianluca Frison ; Moritz Diehl
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:6563-6569
  • DOI:10.1016/j.ifacol.2020.12.073
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper introduces HPIPM, a high-performance framework for quadratic programming (QP), designed to provide building blocks to efficiently and reliably solve model predictive control problems. HPIPM currently supports three QP types, and provides interior point method (IPM) solvers as well (partial) condensing routines. In particular, the IPM for optimal control QPs is intended to supersede the HPMPC solver, and it largely improves robustness while keeping the focus on speed. Numerical experiments show that HPIPM reliably solves challenging QPs, and that it outperforms other state-of-the-art solvers in speed.
  • 关键词:Keywordsquadratic programmingmodel predictive controlembedded optimizationsoftware
国家哲学社会科学文献中心版权所有