首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Gated Recurrent Unit Networks for Remaining Useful Life Prediction ⁎
  • 本地全文:下载
  • 作者:Li Li ; Zhen Zhao ; Xiaoxiao Zhao
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:10498-10504
  • DOI:10.1016/j.ifacol.2020.12.2795
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractRemaining useful life prediction is a key procedure for prognostics and health management. However, traditional data-driven methods rely on handcrafted feature selection from the whole range of time series data, which may not obtain the temporal information for complex systems. This study proposes a gated recurrent unit networks based approach to predict remaining useful life. First, time window approach is applied on sample preparation for multiple sensor data. In particular, unsupervised stacked sparse autoencoder is utilized to automatically extract nonlinear features, then the selected features are fed into gated recurrent unit based recurrent neural networks to predict remaining useful life. The effectiveness of the proposed method is demonstrated on the commercial modular aero-propulsion system simulation data from NASA. Experimental results validate that the proposed approach achieves better prediction performance than other methods.
  • 关键词:Keywordsprognosticsremaining useful lifeautoencodergated recurrent unit
国家哲学社会科学文献中心版权所有