首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:EM-based identification of static errors-in-variables systems utilizing Gaussian Mixture models ⁎
  • 本地全文:下载
  • 作者:Angel L. Cedeño ; Rafael Orellana ; Rodrigo Carvajal
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:863-868
  • DOI:10.1016/j.ifacol.2020.12.844
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper we address the problem of identifying a static errors-in-variables system. Our proposal is based on the Expectation-Maximization algorithm, in which we consider that the distribution of the noise-free input is approximated by a finite Gaussian mixture. This approach allows us to estimate the static system parameters, the input and output noise variances, and the Gaussian mixture parameters. We show the benefits of our proposal via numerical simulations.
  • 关键词:KeywordsErrors-in-variablesMaximum LikelihoodExpectation-MaximizationGaussian MixtureEstimationOptimization
国家哲学社会科学文献中心版权所有