首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Deep Neural Network Approximation of Nonlinear Model Predictive Control
  • 本地全文:下载
  • 作者:Yankai Cao ; R. Bhushan Gopaluni
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:11319-11324
  • DOI:10.1016/j.ifacol.2020.12.538
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper focuses on developing effective computational methods to enable the real-time application of model predictive control (MPC) for nonlinear systems. To achieve this goal, we follow the idea of approximating the MPC control law with a Deep Neural Network (DNN). To train the deep neural network offline, we propose a new “optimize and train” method that combines the steps of data generation and neural network training into a single high-dimensional stochastic optimization problem. This approach directly optimizes the closed loop performance of the DNN controller over a finite horizon for a number of initial states. The large-scale optimization problem can be solved efficiently using parallel computing techniques. The benefits of this approach over the conventional “optimize then train” protocol is illustrated through numerical results.
  • 关键词:KeywordsModel Predictive ControlStochastic OptimizationDeep Neural NetworksNonlinear Systems
国家哲学社会科学文献中心版权所有