摘要:AbstractRobust stability and stochastic stability have separately seen intense study in control theory for many decades. In this work we establish relations between these properties for discrete-time systems and employ them for robust control design. Specifically, we examine a multiplicative noise framework which models the inherent uncertainty and variation in the system dynamics which arise in model-based learning control methods such as adaptive control and reinforcement learning. We provide results which guarantee robustness margins in terms of perturbations on the nominal dynamics as well as algorithms which generate maximally robust controllers.
关键词:KeywordsRobust controller synthesisrobust control (linear case)uncertainty descriptionsstochastic systems