首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Asymptotically Optimal Distributed Filtering of Continuous-Time Linear Systems
  • 本地全文:下载
  • 作者:S. Battilotti ; F. Cacace ; M. d’Angelo
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:3242-3247
  • DOI:10.1016/j.ifacol.2020.12.1124
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper we prove the following new and unexpected result: it is possible to design a continuous-time distributed filter for linear systems that asymptotically tends at each node to the optimal centralized filter. The result concerns distributed estimation over a connected undirected graph and it only requires to exchange the estimates among adjacent nodes. We exhibit an algorithm containing a consensus term with a parametrized gain and show that when the parameter becomes arbitrarily large the error covariance at each node becomes arbitrarily close to the error covariance of the optimal centralized Kalman filter.
  • 关键词:KeywordsContinuous time filtersKalman filtersFiltering theoryConsensus filters
国家哲学社会科学文献中心版权所有