摘要:AbstractThis paper presents a novel kernel-based system identification method, which promotes low complexity of the model in terms of the McMillan degree of the system. The regularization matrix is characterized as a linear combination of pre-selected rank-one matrices with unknown hyperparameter coefficients, and the hyperparameters are derived using a maximuma posterioriestimation approach. Each basis matrix is the optimal regularization matrix for a first-order system. With this basis matrix selection, the McMillan degree of the identified model is upper-bounded by the rank of the regularization matrix, which in turn is equal to the cardinality of the hyperparameters. For this reason, a sparsity-promoting prior is chosen for hyperparameter tuning. The resulting optimization problem has a difference of convex program form which can be efficiently solved. The advantages of the proposed method are that the identified model has a low-complexity structure and that an improved bias-variance trade-off is achieved. Numerical results confirm that the proposed method achieves a better bias-variance trade-off as well as a better fit to the model compared to both the empirical Bayes method and the atomic-norm regularization.