首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Nonparametric models for Hammerstein-Wiener and Wiener-Hammerstein system identification
  • 本地全文:下载
  • 作者:Riccardo S. Risuleo ; Håkan Hjalmarsson
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:400-405
  • DOI:10.1016/j.ifacol.2020.12.198
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe propose a framework for modeling structured nonlinear systems using nonpara-metric Gaussian processes. In particular, we introduce a two-layer stochastic model of latent interconnected Gaussian processes suitable for modeling Hammerstein-Wiener and Wiener-Hammerstein cascades. The posterior distribution of the latent processes is intractable because of the nonlinear interactions in the model; hence, we propose a Markov Chain Monte Carlo method consisting of a Gibbs sampler where each step is implemented using elliptical-slice sampling. We present the results on two example nonlinear systems showing that they can effectively be modeled and identified using the proposed nonparametric modeling approach.
  • 关键词:KeywordsNonlinear system identificationBayesian methodsNonparametric methods
国家哲学社会科学文献中心版权所有