首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Online learning robust MPC: an exploration-exploitation approach ⁎
  • 本地全文:下载
  • 作者:J.M. Manzano ; J. Calliess ; D. Muñoz de la Peña
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:5292-5297
  • DOI:10.1016/j.ifacol.2020.12.1210
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper presents a predictive controller whose model is based on input-output data of the nonlinear system to be controlled. It uses a Lipschitz interpolation technique in which new data may be included in the database in real time, so the controller improves the system model online. An exploration and exploitation policy is proposed, allowing the controller to robustly and cautiously steer the system to the best reachable reference, even if the model lacks data in such region. The conditions needed to ensure recursive feasibility in the presence of output and input constraints and in spite of the uncertainties are given. The results are illustrated in a simulated case study.
  • 关键词:KeywordsLearning controlNonlinear controlTarget trackingRobust stabilityPredictive controlSampled-data systemsOutput feedback
国家哲学社会科学文献中心版权所有