首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Characterizing the Predictive Accuracy of Dynamic Mode Decomposition for Data-Driven Control
  • 本地全文:下载
  • 作者:Qiugang Lu ; Sungho Shin ; Victor M. Zavala
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:11289-11294
  • DOI:10.1016/j.ifacol.2020.12.373
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractDynamic mode decomposition (DMD) is a versatile approach that enables the construction of low-order models from data. Controller design tasks based on such models require estimates and guarantees on predictive accuracy. In this work, we provide a theoretical analysis of DMD model errors that reveals impacts of model order and data availability. The analysis also establishes conditions under which DMD models can be made asymptotically exact. We numerically validate our theoretical results using a 2D diffusion system.
  • 关键词:KeywordsDynamic mode decompositiondatacontrollow-order modelserror bounds
国家哲学社会科学文献中心版权所有