首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:A Finite Time Convergent Least-Squares Modification of the Dynamic Regressor Extension and Mixing Algorithm
  • 本地全文:下载
  • 作者:Marijan Palmisano ; Markus Reichhartinger
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:5105-5110
  • DOI:10.1016/j.ifacol.2020.12.1144
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe recently proposed Dynamic Regressor Extension and Mixing (DREM) algorithm can be used to estimate the parameters of structured uncertainties contained in the mathematical model of a plant. In order to provide an adaptation that is less sensitive to the unavoidable mismatch between a plant and its model a least-squares based modification of the DREM estimator is proposed in this paper. The modified estimator yields significantly better estimation results as illustrated by the conducted real-world experiment and its parameter estimates also converge within finite time.
  • 关键词:KeywordsNonlinear observersfilter designparameter identificationfinite time estimationparameter estimationnonlinear regressor
国家哲学社会科学文献中心版权所有