首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Cloud-based model predictive control with variable horizon ⁎
  • 本地全文:下载
  • 作者:Per Skarin ; Johan Eker ; Karl-Erik Årzén
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:6993-7000
  • DOI:10.1016/j.ifacol.2020.12.437
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractA novel method using the cloud to implement a variable horizon model predictive controller is presented. In case of sudden long delays and downtime, a graceful degradation is used. Robust, best effort strategies allow industrial grade use of the powerful, efficient, and quickly improving cloud ecosystems. The variable horizon strategy finds use in, for example, non-linear control problems, and the proposed method can be generalized to implement robust and scalable controllers that benefit from cloud technology. We show results from two horizon selection strategies, service degradation and connectivity issues.
  • 关键词:KeywordsIndustry automationPredictive controlOptimal controlSystems conceptSystem architecturesNetworksAdaptive systemsParallelism
国家哲学社会科学文献中心版权所有