首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Non-Dimensional Feature Engineering and Data-Driven Modeling for Microchannel Reactor Control
  • 本地全文:下载
  • 作者:Calvin Tsay ; Michael Baldea
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:11295-11300
  • DOI:10.1016/j.ifacol.2020.12.526
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractCatalytic plate microchannel reactors (CPRs) are a promising means for modular hydrogen/fuels production from distributed natural gas resources. However, the equipment miniaturization presents challenges for process control, including spatially-distributed models, limited availability of measurements, and fast process time constants. In the present paper, we investigate the use of data-driven models—specifically, artificial neural networks (ANNs)—to estimate temperature “hotspots” within CPRs. We prescribe nonlinear transformations of the model inputs in the form of well-known dimensionless quantities (e.g., Reynolds number), and we show that these engineered features can improve the prediction capability of computationally parsimonious ANNs using a first-principles reactor model. Finally, we present a simulation case study that demonstrates the use of a trained ANN for inferential model predictive control.
  • 关键词:Keywordsfeature engineeringmanufacturing processesprocess controlchemical industry
国家哲学社会科学文献中心版权所有