首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Optimal Sensing Precision in Ensemble and Unscented Kalman Filtering ⁎
  • 本地全文:下载
  • 作者:Niladri Das ; Raktim Bhattacharya
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:5016-5021
  • DOI:10.1016/j.ifacol.2020.12.1101
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe consider the problem of selecting an optimal set of sensor precisions to estimate the states of a non-linear dynamical system using an Ensemble Kalman filter and an Unscented Kalman filter, which uses random and deterministic ensembles respectively. Specifically, the goal is to choose at run-time, a sparse set of sensor precisions for active-sensing that satisfies certain constraints on the estimated state covariance. In this paper, we show that this sensor precision selection problem is a semidefinite programming problem when we usel1norm over precision vector as the surrogate measure to induce sparsity. We formulate a sensor selection scheme over multiple time steps, for certain constraints on the terminal estimated state covariance.
  • 关键词:KeywordsNon-linear systemsestimationmonitoringoptimal sensingoptimization
国家哲学社会科学文献中心版权所有