首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:A Multi-observer Approach for Parameter and State Estimation of Nonlinear Systems with Slowly Varying Parameters ⁎
  • 本地全文:下载
  • 作者:Luis Cuevas ; Dragan Nešić ; Chris Manzie
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:4208-4213
  • DOI:10.1016/j.ifacol.2020.12.2465
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis manuscript addresses the parameter and state estimation problem for continuous time nonlinear systems with unknown slowly time-varying parameters, which are assumed to belong to a known compact set. The problem is tackled by using the multi-observer approach under the supervisory framework, which generates parameter and state estimates by using a finite number of sample points of the parameter set, a bank of observers, a set of monitoring signals and a selection criterion. This note proposes a novel dynamic sampling policy for the multi-observer technique and studies its convergence properties. We prove that the parameter and state estimation errors are ultimately bounded where the ultimate bounds can be made arbitrarily small if the parameter varies sufficiently slowly, and the number of samples is sufficiently large.
  • 关键词:KeywordsUncertain nonlinear systemsMulti-observerSupervisory Framework
国家哲学社会科学文献中心版权所有