首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Learning Robustness with Bounded Failure: An Iterative MPC Approach
  • 本地全文:下载
  • 作者:Monimoy Bujarbaruah ; Akhil Shetty ; Kameshwar Poolla
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:7085-7090
  • DOI:10.1016/j.ifacol.2020.12.462
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe propose an approach to design a Model Predictive Controller (MPC) for constrained Linear Time Invariant systems performing an iterative task. The system is subject to an additive disturbance, and the goal is to learn to satisfy state and input constraints robustly. Using disturbance measurements after each iteration, we construct Confidence Support sets, which contain the true support of the disturbance distribution with a given probability. As more data is collected, the Confidence Supports converge to the true support of the disturbance. This enables design of an MPC controller that avoids conservative estimate of the disturbance support, while simultaneously bounding the probability of constraint violation. The efficacy of the proposed approach is then demonstrated with a detailed numerical example.
  • 关键词:KeywordsPredictive Control for Linear SystemsIterative Predictive ControlRobust Convex OptimizationConfidence IntervalsBootstrap
国家哲学社会科学文献中心版权所有