首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis
  • 本地全文:下载
  • 作者:Matthieu Barreau ; Carsten W. Scherer ; Frédéric Gouaisbaut
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:7752-7757
  • DOI:10.1016/j.ifacol.2020.12.1534
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper proposes a framework to assess the stability of an Ordinary Differential Equation (ODE) which is coupled to a 1D-partial differential equation (PDE). The stability theorem is based on a new result on Integral Quadratic Constraints (IQCs) and expressed in terms of two linear matrix inequalities with a moderate computational burden. The IQCs are not generated using dissipation inequalities involving the whole state of an infinite-dimensional system, but by using projection coefficients of the infinite-dimensional state. This permits to generalize our robustness result to many other PDEs. The proposed methodology is applied to a time-delay system and numerical results comparable to those in the literature are obtained.
  • 关键词:KeywordsDistributed Parameter SystemsRobustness analysisIQCsCoupled ODE/PDE
国家哲学社会科学文献中心版权所有