摘要:In<b> </b>this study, we addresse traffic congestion on river-crossing channels in a megacity which is divided into several subareas by trunk rivers. With the development of urbanization, cross-river travel demand is continuously increasing. To deal with the increasing challenge, the urban transport authority may build more river-crossing channels and provide more high-volume public transport services to alleviate traffic congestion. However, it is widely accepted that even though these strategies can mitigate traffic congestion to a certain level, they are not essential approaches to address traffic congestion. In this study, we consider a channel toll scheme for addressing this issue. Additional fares are applied to private vehicles, that an appropriate number of private vehicle drivers are motivated to take public transport or switch to neighboring uncongested river-crossing channels. To minimize the toll surcharge on both neighboring channels, while alleviating the traffic flow to a certain level, in this study, we provide a bi-objective mathematical model. Some properties of this model are discussed, including the existence and uniqueness of the Pareto optimal solution. To address this problem, a trial-and-error method is applied. Numerical experiments are provided to validate the proposed solution method.