首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Optimal group testing designs for prevalence estimation combining imperfect and gold standard assays
  • 本地全文:下载
  • 作者:Shih-Hao Huang ; Mong-Na Lo Huang ; Kerby Shedden
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2021
  • 卷号:15
  • 期号:1
  • 页码:630-649
  • DOI:10.1214/20-EJS1786
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider group testing studies where a relatively inexpensive but imperfect assay and a perfectly accurate but higher-priced assay are both available. The primary goal is to accurately estimate the prevalence of a trait of interest, with the error rates of the imperfect assay treated as nuisance parameters. Considering the costs for performing the two assays and enrolling subjects, we propose a $D_{s}$-optimal mixed design to provide maximal information about the prevalence. We show that extreme values for the cost of the perfect assay lead to designs in which only one of the two assays is used, but otherwise the optimal designs use both assays. We provide a guaranteed algorithm to efficiently build an optimal design on discrete design spaces. Our computational results also show the robustness of the proposed design.
  • 关键词:Cost function;$D_{s}$-optimality;gold standard;group testing;mixed design;prevalence estimation;testing error rate
国家哲学社会科学文献中心版权所有