首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Convergence analysis of a collapsed Gibbs sampler for Bayesian vector autoregressions
  • 本地全文:下载
  • 作者:Karl Oskar Ekvall ; Galin L. Jones
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2021
  • 卷号:15
  • 期号:1
  • 页码:691-721
  • DOI:10.1214/21-EJS1800
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We study the convergence properties of a collapsed Gibbs sampler for Bayesian vector autoregressions with predictors, or exogenous variables. The Markov chain generated by our algorithm is shown to be geometrically ergodic regardless of whether the number of observations in the underlying vector autoregression is small or large in comparison to the order and dimension of it. In a convergence complexity analysis, we also give conditions for when the geometric ergodicity is asymptotically stable as the number of observations tends to infinity. Specifically, the geometric convergence rate is shown to be bounded away from unity asymptotically, either almost surely or with probability tending to one, depending on what is assumed about the data generating process. This result is one of the first of its kind for practically relevant Markov chain Monte Carlo algorithms. Our convergence results hold under close to arbitrary model misspecification.
  • 关键词:Convergence complexity analysis;geometric ergodicity;Markov chain Monte Carlo;Bayesian vector autoregression;Gibbs sampler
国家哲学社会科学文献中心版权所有