首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Finite Mixture Modeling via Skew-Laplace Birnbaum–Saunders Distribution
  • 本地全文:下载
  • 作者:Mehrdad Naderi ; Mahdieh Mozafari ; Kheirolah Okhli
  • 期刊名称:Journal of Statistical Theory and Applications (JSTA)
  • 电子版ISSN:1538-7887
  • 出版年度:2020
  • 卷号:19
  • 期号:1
  • 页码:49-58
  • DOI:10.2991/jsta.d.200224.008
  • 语种:English
  • 出版社:Atlantis Press
  • 摘要:Finite mixture model is a widely acknowledged model-based clustering method for analyzing data. In this paper, a new finite mixture model via an extension of Birnbaum–Saunders distribution is introduced. The new mixture model provide a useful generalization of the heavy-tailed lifetime model since the mixing components cover both skewness and kurtosis. Some properties and characteristics of the model are derived and an expectation and maximization (EM)-type algorithm is developed to compute maximum likelihood estimates. The asymptotic standard errors of the parameter estimates are obtained via offering an information-based approach. Finally, the performance of the methodology is illustrated by considering both simulated and real datasets.
  • 关键词:Birnbaum–Saunders distribution; Normal mean-variance mixture model; Skew-Laplace distribution; Finite mixture model; ECM algorithm
国家哲学社会科学文献中心版权所有