首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:The normal-tangent-G class of probabilistic distributions properties and real data modelling
  • 本地全文:下载
  • 作者:Fábio Silveira ; Frank Gomes-Silva ; Cícero Brito
  • 期刊名称:Pakistan Journal of Statistics and Operation Research
  • 印刷版ISSN:2220-5810
  • 出版年度:2020
  • 卷号:16
  • 期号:4
  • 页码:827-838
  • DOI:10.18187/pjsor.v16i4.3443
  • 语种:English
  • 出版社:College of Statistical and Actuarial Sciences
  • 摘要:This paper introduces a novel class of probability distributions called normal-tangent-G, whose submodels are parsi- monious and bring no additional parameters besides the baseline’s. We demonstrate that these submodels are iden- tifiable as long as the baseline is. We present some properties of the class, including the series representation of its probability density function (pdf) and two special cases. Monte Carlo simulations are carried out to study the behav- ior of the maximum likelihood estimates (MLEs) of the parameters for a particular submodel. We also perform an application of it to a real dataset to exemplify the modelling benefits of the class.
  • 关键词:Class of probabilistic distributions;Identifiable;Maximum likelihood;Modelling;Normal distribution
国家哲学社会科学文献中心版权所有