首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term
  • 本地全文:下载
  • 作者:Xinhai Li ; Baidu Li ; Guiming Wang
  • 期刊名称:MethodsX
  • 印刷版ISSN:2215-0161
  • 电子版ISSN:2215-0161
  • 出版年度:2020
  • 卷号:7
  • 页码:1-12
  • DOI:10.1016/j.mex.2020.101067
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1X2 + ɛ., the interaction term is quantified as the product of X1and X2. We developed fractional-power interaction regression (FPIR), using βX1MX2Nas the interaction term. The rationale of FPIR is that the slopes of Y-X1regression along the X2gradient are modeled using the nonlinear function (Slope = β1 + β3MX1M-1X2N), instead of the linear function (Slope = β1 + β3X2) that regular regressions normally implement. The ranges ofMandNare from -56 to 56 with 550 candidate values, respectively. We applied FPIR using a well-studied dataset, nest sites of the crested ibis (Nipponia nippon).We further tested FPIR by other 4692 regression models. FPIRs have lower AIC values (-302 ± 5003.5) than regular regressions (-168.4 ± 4561.6), and the effect size of AIC values between FPIR and regular regression is 0.07 (95% CI: 0.04–0.10). We also compared FPIR with complex models such as polynomial regression, generalized additive model, and random forest. FPIR is flexible and interpretable, using a minimum number of degrees of freedom to maximize variance explained. We have provided a new R package, interactionFPIR, to estimate the values ofMandN, and suggest using FPIR whenever the interaction term is likely to be significant.• Introduced fractional-power interaction regression (FPIR) as Y ~ β0 + β1X1 + β2X2 + β3X1MX2N + ɛ to replace the current regression model Y ~ β0 + β1X1 + β2X2 + β3X1X2 + ɛ;• Clarified the rationale of FPIR, and compared it with regular regression model, polynomial regression, generalized additive model, and random forest using regression models for 4692 species;• Provided an R package, interactionFPIR, to calculate the values ofMandN, and other model parameters.Graphical abstractDisplay Omitted
  • 关键词:Fractional-power interaction regression (FPIR);Multiple linear regression;Nonlinearity;InteractionFPIR;R package
国家哲学社会科学文献中心版权所有