摘要:AbstractA recently reported protocol demonstrates efficient CRISPR/Cas9 gene editing ofChlamydomonas reinhardtii. The published protocol demonstrates transformation and editing of a wall-less strain ofC. reinhardtiiusing plasmid encoded Cas9 and sgRNA. However, the published protocol utilizes a complex electroporation waveform that cannot be generated by most electroporation systems. It is unknown whether transformation via this complex electroporation waveform is essential for high efficiency of Cas9 edits, perhaps by optimizing Cas9 or guide RNA gene expression or incorporation into the genome. We demonstrate that a simple electroporation waveform can deliver plasmid encoded CRISPR/Cas9 into and edit the genome of a wall-less strain ofC. reinhardtiias efficiently as the more complex waveform. Our modified electroporation protocol makes the plasmid based CRISPR/Cas9 genome editing method accessible to a greater number ofChlamydomonasresearchers.•Our protocol uses a simple electroporation waveform to replace a complex waveform used to achieve efficient CRISPR/Cas9 gene editing in a wall-less strain ofChlamydomonas reinhardtii.•We also increased concentration of plasmids to maintain high gene editing efficiency.•We minimized modifications to other steps of the original protocol.Graphical abstractDisplay Omitted