首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:A self-organizing, living library of time-series data
  • 本地全文:下载
  • 作者:Ben D. Fulcher ; Carl H. Lubba ; Sarab S. Sethi
  • 期刊名称:Scientific Data
  • 电子版ISSN:2052-4463
  • 出版年度:2020
  • 卷号:7
  • 期号:1
  • 页码:1-7
  • DOI:10.1038/s41597-020-0553-0
  • 语种:English
  • 出版社:Nature Publishing Group
  • 摘要:Time-series data are measured across the sciences, from astronomy to biomedicine, but meaningful cross-disciplinary interactions are limited by the challenge of identifying fruitful connections. Here we introduce the web platform, CompEngine, a self-organizing, living library of time-series data, that lowers the barrier to forming meaningful interdisciplinary connections between time series. Using a canonical feature-based representation, CompEngine places all time series in a common feature space, regardless of their origin, allowing users to upload their data and immediately explore diverse data with similar properties, and be alerted when similar data is uploaded in future. In contrast to conventional databases which are organized by assigned metadata, CompEngine incentivizes data sharing by automatically connecting experimental and theoretical scientists across disciplines based on the empirical structure of the data they measure. CompEngine鈥檚 growing library of interdisciplinary time-series data also enables the comprehensive characterization of time-series analysis algorithms across diverse types of empirical data.
国家哲学社会科学文献中心版权所有