摘要:The aircrafts’ engine performance deteriorates sharply during the take-off and landing at high plateau airport. This situation increases the take-off or landing distance, aggravating the hidden danger of birdstrikes at high plateau airport. This paper first used GIS to classify and rasterize the bird data and calculated the monthly Birdstrike Risk Index (BRI) within 6, 13, and 25 km radii of Lhasa Airport, based on the bird observation data of Tibet and the birdstrike data of Lhasa Airport from 2015 to 2019. The spatiotemporal relationships between the BRI and the environmental factors around Lhasa Airport were compared by the Geographically or Temporally Weighted Regression (GWR or TWR) model and Geographically and Temporally Weighted Regression (GTWR) model. The results showed that the temporal nonstationary effect of environmental factors was more significant than that of spatial nonstationary at Lhasa Airport. Besides, the composition of land types had positive impacts on birdstrike risk within the 6 km radius, and this scope was broader than that of the plain airport. Within the 13 km and 25 km ranges, the water distribution and the altitude during dry season also positively impacted birdstrike risk. Moreover, the key factor to birdstrike risk was the water distribution in December.