首页    期刊浏览 2024年12月15日 星期日
登录注册

文章基本信息

  • 标题:Semi-Automated Sleep EEG Scoring with Active Learning and HMM-Based Deletion of Ambiguous Instances
  • 本地全文:下载
  • 作者:Martin Macaš ; Nela Grimová ; Václav Gerla
  • 期刊名称:Proceedings
  • 电子版ISSN:2504-3900
  • 出版年度:2019
  • 卷号:31
  • 期号:1
  • 页码:46
  • DOI:10.3390/proceedings2019031046
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Sleep scoring is an important tool for physicians. Assigning of segments of long biomedical signal into sleep stages is, however, a very time consuming, tedious and expensive task which is performed by an expert. Automatic sleep scoring is not well accepted in clinical practice because of low interactivity and unacceptable error, which is often caused by inter-patient variability. This is solved by proposing a semi-automatic approach, where parts of the signal are selected for manual labeling by active learning and the resulting classifier is used for automatic labeling of the remaining signal. The active learning is disturbed by noisy ambiguous data instances caused by continuous character of the sleep stage transitions and a removal of such transitional instances from the training set prior to active learning can improve the efficiency of the method. This paper proposes to use the hidden Markov model for the detection of the transitional instances. It shows experimentally on 35 sleep EEG recordings that such a method significantly improves the semi-automatic method. A complete methodology for semi-automatic sleep scoring is proposed and evaluated, which can be better accepted as a decision support tool for sleep scoring experts.
国家哲学社会科学文献中心版权所有