期刊名称:ISPRS International Journal of Geo-Information
电子版ISSN:2220-9964
出版年度:2020
卷号:9
期号:1
页码:47
DOI:10.3390/ijgi9010047
语种:English
出版社:MDPI AG
摘要:Hydropower dam displacement is influenced by various factors (dam ageing, reservoir water level, air, water, and concrete temperature), which cause complex nonlinear behaviour that is difficult to predict. Object deformation monitoring is a task of geodetic and civil engineers who use different instruments and methods for measurements. Only geodetic methods have been used for the object movement analysis in this research. Although the whole object is affected by the influencing factors, different parts of the object react differently. Hence, one model cannot describe behaviour of every part of the object precisely. In this research, a localised approach is presented—two individual models are developed for every point strategically placed on the object: one model for the analysis and prediction in the direction of the X axis and the other for the Y axis. Additionally, the prediction of horizontal dam movement is not performed directly from measured values of influencing factors, but from predicted values obtained by machine learning and statistical methods. The results of this research show that it is possible to perform accurate short-term time series dam movement prediction by using machine learning and statistical methods and that the only limiting factor for improving prediction length is accurate weather forecast.