期刊名称:Current Journal of Applied Science and Technology
印刷版ISSN:2457-1024
出版年度:2020
卷号:39
期号:33
页码:47-64
DOI:10.9734/cjast/2020/v39i3331017
语种:English
出版社:Sciencedomain International
摘要:It is projected that by 2030, the global population will rise to 8.5 billion influencing various changes to the whole globe. Since 1750, the level of carbon dioxide (CO2) has increased sharply and exceeds more than 31 percent as a result of land use change and intense farming activities that require unique and modern actions to manage its climate - related risks. The earth is getting warmer day by day due to land use transition, intensive agriculture; global carbon (C) emissions have drastically increases after industrial revolution. Soil C depletion is enhanced by soil mismanagement, soil degradation and aggravated by land exploitation. Sources of emissions from various anthropogenic activities; land use change, burning of natural biomass, natural conversion to agricultural habitats, and soil cultivation. The soil as a dynamic natural entity has the potential of storing most of the C from atmosphere that will cause substantial decrease in CO2 content that is enhancing global climate change. Through agriculture, soils can reduce CO2 emissions in the atmosphere and store C while having good effect on food security, water quality and climate prior to the introduction of best management and restorative land-use practices. Most of the reduced C in soil carbon (SC) pools can be recovered by embracing conservation tillage (no-till, reduced tillage) with cover cropping and incorporating crop residues as mulch, nutrient management through integrated nutrient management practices, manure and organic amendments, biochar and using other productive soil management strategies. These management systems lead to preservation of lands that are being or have been depleted, increase carbon production, enhance soil health and decrease the amount of atmospheric CO2 leading to climate change mitigation.