摘要:AbstractIn this paper, a novel distributed yet integrated approach for diagnostics and prognostics is presented. An experimental study is conducted to validate the performance. Results showed that distributed prognostics give better performance in leaser computational time. Also, the proposed approach helps in making the results of the machine learning techniques comprehensible and more accurate. These results will be handy in arriving at predictive maintenance schedule considering the criticality of the system, the dependency of the components, available maintenance resources and confidence level in the results of the prognostic.