首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Intuitive Joint Priors for Variance Parameters
  • 本地全文:下载
  • 作者:Geir-Arne Fuglstad ; Ingeborg Gullikstad Hem ; Alexander Knight
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2020
  • 卷号:15
  • 期号:4
  • 页码:1109-1137
  • DOI:10.1214/19-BA1185
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Variance parameters in additive models are typically assigned independent priors that do not account for model structure. We present a new framework for prior selection based on a hierarchical decomposition of the total variance along a tree structure to the individual model components. For each split in the tree, an analyst may be ignorant or have a sound intuition on how to attribute variance to the branches. In the former case a Dirichlet prior is appropriate to use, while in the latter case a penalised complexity (PC) prior provides robust shrinkage. A bottom-up combination of the conditional priors results in a proper joint prior. We suggest default values for the hyperparameters and offer intuitive statements for eliciting the hyperparameters based on expert knowledge. The prior framework is applicable for R packages for Bayesian inference such as INLA and RStan.
  • 关键词:additive models;hierarchical variance decomposition;latent Gaussian models;penalised complexity;joint prior distributions;variance parameters
国家哲学社会科学文献中心版权所有