摘要:Feller (1945) provided a coupling between the counts of cycles of various sizes in a uniform random permutation of $[n]$ and the spacings between successes in a sequence of $n$ independent Bernoulli trials with success probability $1/n$ at the $n$th trial. Arratia, Barbour and Tavaré (1992) extended Feller’s coupling, to associate cycles of random permutations governed by the Ewens $(\theta )$ distribution with spacings derived from independent Bernoulli trials with success probability $\theta /(n-1+\theta )$ at the $n$th trial, and to conclude that in an infinite sequence of such trials, the numbers of spacings of length $\ell $ are independent Poisson variables with means $\theta /\ell $. Ignatov (1978) first discovered this remarkable result in the uniform case $\theta = 1$, by constructing Bernoulli $(1/n)$ trials as the indicators of record values in a sequence of i.i.d. uniform $[0,1]$ variables. In the present article, the Poisson property of inhomogeneous Bernoulli spacings is explained by a variation of Ignatov’s approach for a general $\theta >0$. Moreover, our approach naturally provides random permutations of infinite sets whose cycle counts are exactly given by independent Poisson random variables.
关键词:cycles;records;random permutations;Poisson process