首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Regression Tree Based Explanation for Anomaly Detection Algorithm
  • 本地全文:下载
  • 作者:Iñigo López-Riobóo Botana ; Carlos Eiras-Franco ; Amparo Alonso-Betanzos
  • 期刊名称:Proceedings
  • 电子版ISSN:2504-3900
  • 出版年度:2020
  • 卷号:55
  • 期号:8
  • 页码:7
  • DOI:10.3390/proceedings2020054007
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:This work presents EADMNC (Explainable Anomaly Detection on Mixed Numerical and Categorical spaces), a novel approach to address explanation using an anomaly detection algorithm, ADMNC, which provides accurate detections on mixed numerical and categorical input spaces. Our improved algorithm leverages the formulation of the ADMNC model to offer pre-hoc explainability based on CART (Classification and Regression Trees). The explanation is presented as a segmentation of the input data into homogeneous groups that can be described with a few variables, offering supervisors novel information for justifications. To prove scalability and interpretability, we list experimental results on real-world large datasets focusing on network intrusion detection domain.
国家哲学社会科学文献中心版权所有