首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Asymptotic properties for the parameter estimation in Ornstein-Uhlenbeck process with discrete observations
  • 本地全文:下载
  • 作者:Hui Jiang ; Hui Liu ; Youzhou Zhou
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2020
  • 卷号:14
  • 期号:2
  • 页码:3192-3229
  • DOI:10.1214/20-EJS1738
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In this paper, under discrete observations, we study Cramér-type moderate deviations (extended central limit theorem) for parameter estimation in Ornstein-Uhlenbeck process. Our results contain both stationary and explosive cases. For applications, we propose test statistics which can be used to construct rejection regions in the hypothesis testing for the drift coefficient, and the corresponding probability of type II error tends to zero exponentially. Simulation study shows that our test statistics have good finite-sample performances both in size and power. The main methods include the deviation inequalities for multiple Wiener-Itô integrals, as well as the asymptotic analysis techniques.
  • 关键词:Ornstein-Uhlenbeck process;discrete observations;moderate deviation principle;multiple Wiener-Itô integrals
国家哲学社会科学文献中心版权所有