期刊名称:ISPRS International Journal of Geo-Information
电子版ISSN:2220-9964
出版年度:2020
卷号:9
期号:4
页码:252
DOI:10.3390/ijgi9040252
语种:English
出版社:MDPI AG
摘要:Gullies reduce both the quality and quantity of productive land, posing a serious threat to sustainable agriculture, hence, food security. Machine Learning (ML) algorithms are essential tools in the identification of gullies and can assist in strategic decision-making relevant to soil conservation. Nevertheless, accurate identification of gullies is a function of the selected ML algorithms, the image and number of classes used, i.e., binary (two classes) and multiclass. We applied Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and Random Forest (RF) on a Systeme Pour l’Observation de la Terre (SPOT-7) image to extract gullies and investigated whether the multiclass (m) approach can offer better classification accuracy than the binary (b) approach. Using repeated k-fold cross-validation, we generated 36 models. Our findings revealed that, of these models, both RFb (98.70%) and SVMm (98.01%) outperformed the LDA in terms of overall accuracy (OA). However, the LDAb (99.51%) recorded the highest producer’s accuracy (PA) but had low corresponding user’s accuracy (UA) with 18.5%. The binary approach was generally better than the multiclass approach; however, on class level, the multiclass approach outperformed the binary approach in gully identification. Despite low spectral resolution, the pan-sharpened SPOT-7 product successfully identified gullies. The proposed methodology is relatively simple, but practically sound, and can be used to monitor gullies within and beyond the study region.