首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:A Holistic Overview of Anticipatory Learning for the Internet of Moving Things: Research Challenges and Opportunities
  • 本地全文:下载
  • 作者:Hung Cao ; Monica Wachowicz
  • 期刊名称:ISPRS International Journal of Geo-Information
  • 电子版ISSN:2220-9964
  • 出版年度:2020
  • 卷号:9
  • 期号:4
  • 页码:272
  • DOI:10.3390/ijgi9040272
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:The proliferation of Internet of Things (IoT) systems has received much attention from the research community, and it has brought many innovations to smart cities, particularly through the Internet of Moving Things (IoMT). The dynamic geographic distribution of IoMT devices enables the devices to sense themselves and their surroundings on multiple spatio-temporal scales, interact with each other across a vast geographical area, and perform automated analytical tasks everywhere and anytime. Currently, most of the geospatial applications of IoMT systems are developed for abnormal detection and control monitoring. However, it is expected that, in the near future, optimization and prediction tasks will have a larger impact on the way citizens interact with smart cities. This paper examines the state of the art of IoMT systems and discusses their crucial role in supporting anticipatory learning. The maximum potential of IoMT systems in future smart cities can be fully exploited in terms of proactive decision making and decision delivery via an anticipatory action/feedback loop. We also examine the challenges and opportunities of anticipatory learning for IoMT systems in contrast to GIS. The holistic overview provided in this paper highlights the guidelines and directions for future research on this emerging topic.
国家哲学社会科学文献中心版权所有