首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Conditional density estimation with covariate measurement error
  • 本地全文:下载
  • 作者:Xianzheng Huang ; Haiming Zhou
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2020
  • 卷号:14
  • 期号:1
  • 页码:970-1023
  • DOI:10.1214/20-EJS1688
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider estimating the density of a response conditioning on an error-prone covariate. Motivated by two existing kernel density estimators in the absence of covariate measurement error, we propose a method to correct the existing estimators for measurement error. Asymptotic properties of the resultant estimators under different types of measurement error distributions are derived. Moreover, we adjust bandwidths readily available from existing bandwidth selection methods developed for error-free data to obtain bandwidths for the new estimators. Extensive simulation studies are carried out to compare the proposed estimators with naive estimators that ignore measurement error, which also provide empirical evidence for the effectiveness of the proposed bandwidth selection methods. A real-life data example is used to illustrate implementation of these methods under practical scenarios. An R package, lpme, is developed for implementing all considered methods, which we demonstrate via an R code example in Appendix B.2.
  • 关键词:Bandwidth; bias; cross validation; deconvoluting kernel
国家哲学社会科学文献中心版权所有