首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Estimating transformation function
  • 本地全文:下载
  • 作者:Yunyi Zhang ; Jiazheng Liu ; Zexin Pan
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2019
  • 卷号:13
  • 期号:2
  • 页码:3095-3119
  • DOI:10.1214/19-EJS1603
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In this paper, we propose an estimator for $g(x)$ under the model $Y_{i}=g(Z_{i}),\ i=1,2,...,n$ where $Z_{i},\ i=1,2,...$ are random variables with known distribution but unknown observed values, $Y_{i},\ i=1,2,...$ are observed data and $g(x)$ is an unknown strictly monotonically increasing function (we call $g(x)$ transformation function). We prove the almost sure convergence of the estimator and construct confidence intervals and bands when $Z_{i},i=1,2,...$ are i.i.d data based on their asymptotic distribution. Corresponding case when $Z_{i}$ being linear process is handled by resampling method. We also design the hypothesis test regarding whether $g(x)$ equals an expected transformation function or not. The finite sample performance is evaluated by applying the method to simulated data and an urban waste water treatment plant’s dataset.
  • 关键词:Transformation function; quantile process; resampling method
国家哲学社会科学文献中心版权所有