首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Maximum likelihood estimation for Gaussian processes under inequality constraints
  • 本地全文:下载
  • 作者:François Bachoc ; Agnès Lagnoux ; Andrés F. López-Lopera
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2019
  • 卷号:13
  • 期号:2
  • 页码:2921-2969
  • DOI:10.1214/19-EJS1587
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider covariance parameter estimation for a Gaussian process under inequality constraints (boundedness, monotonicity or convexity) in fixed-domain asymptotics. We address the estimation of the variance parameter and the estimation of the microergodic parameter of the Matérn and Wendland covariance functions. First, we show that the (unconstrained) maximum likelihood estimator has the same asymptotic distribution, unconditionally and conditionally to the fact that the Gaussian process satisfies the inequality constraints. Then, we study the recently suggested constrained maximum likelihood estimator. We show that it has the same asymptotic distribution as the (unconstrained) maximum likelihood estimator. In addition, we show in simulations that the constrained maximum likelihood estimator is generally more accurate on finite samples. Finally, we provide extensions to prediction and to noisy observations.
  • 关键词:Gaussian processes; inequality constraints; fixed-domain asymptotics; constrained maximum likelihood; asymptotic normality
国家哲学社会科学文献中心版权所有