首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Conjugate Priors and Posterior Inference for the Matrix Langevin Distribution on the Stiefel Manifold
  • 本地全文:下载
  • 作者:Subhadip Pal ; Subhajit Sengupta ; Riten Mitra
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2020
  • 卷号:15
  • 期号:3
  • 页码:871-908
  • DOI:10.1214/19-BA1176
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Directional data emerges in a wide array of applications, ranging from atmospheric sciences to medical imaging. Modeling such data, however, poses unique challenges by virtue of their being constrained to non-Euclidean spaces like manifolds. Here, we present a unified Bayesian framework for inference on the Stiefel manifold using the Matrix Langevin distribution. Specifically, we propose a novel family of conjugate priors and establish a number of theoretical properties relevant to statistical inference. Conjugacy enables translation of these properties to their corresponding posteriors, which we exploit to develop the posterior inference scheme. For the implementation of the posterior computation, including the posterior sampling, we adopt a novel computational procedure for evaluating the hypergeometric function of matrix arguments that appears as normalization constants in the relevant densities.
  • 关键词:Bayesian inference; conjugate prior; hypergeometric function of matrix argument; matrix Langevin distribution; Stiefel manifold; vectorcardiography
国家哲学社会科学文献中心版权所有