首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Dynamic Quantile Linear Models: A Bayesian Approach
  • 本地全文:下载
  • 作者:Kelly C. M. Gonçalves ; Hélio S. Migon ; Leonardo S. Bastos
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2020
  • 卷号:15
  • 期号:2
  • 页码:335-362
  • DOI:10.1214/19-BA1156
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:The paper introduces a new class of models, named dynamic quantile linear models, which combines dynamic linear models with distribution-free quantile regression producing a robust statistical method. Bayesian estimation for the dynamic quantile linear model is performed using an efficient Markov chain Monte Carlo algorithm. The paper also proposes a fast sequential procedure suited for high-dimensional predictive modeling with massive data, where the generating process is changing over time. The proposed model is evaluated using synthetic and well-known time series data. The model is also applied to predict annual incidence of tuberculosis in the state of Rio de Janeiro and compared with global targets set by the World Health Organization.
  • 关键词:asymmetric Laplace distribution; Bayes linear; Bayesian quantile regression; dynamic models; Gibbs sampling
国家哲学社会科学文献中心版权所有